SetExpan: Corpus-Based Set Expansion via Context Feature Selection and Rank Ensemble
نویسندگان
چکیده
Corpus-based set expansion (i.e., finding the “complete” set of entities belonging to the same semantic class, based on a given corpus and a tiny set of seeds) is a critical task in knowledge discovery. It may facilitate numerous downstream applications, such as information extraction, taxonomy induction, question answering, and web search. To discover new entities in an expanded set, previous approaches either make one-time entity ranking based on distributional similarity, or resort to iterative pattern-based bootstrapping. The core challenge for these methods is how to deal with noisy context features derived from free-text corpora, which may lead to entity intrusion and semantic drifting. In this study, we propose a novel framework, SetExpan, which tackles this problem, with two techniques: (1) a context feature selection method that selects clean context features for calculating entity-entity distributional similarity, and (2) a ranking-based unsupervised ensemble method for expanding entity set based on denoised context features. Experiments on three datasets show that SetExpan is robust and outperforms previous state-of-the-art methods in terms of mean average precision.
منابع مشابه
A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملA Rank Aggregation Algorithm for Ensemble of Multiple Feature Selection Techniques in Credit Risk Evaluation
In credit risk evaluation the accuracy of a classifier is very significant for classifying the high-risk loan applicants correctly. Feature selection is one way of improving the accuracy of a classifier. It provides the classifier with important and relevant features for model development. This study uses the ensemble of multiple feature ranking techniques for feature selection of credit data. ...
متن کاملAn Ensemble Approach to Corpus Based Word Sense Disambiguation
This paper presents a corpus{based approach to word sense disambiguation that combines a number of Naive Bayesian classiers into an ensemble that performs disambiguation via a majority vote. Each of the member classiers is based on collocation and co{occurrence features found in varying sized windows of context. This approach is motivated by the observation that, in general, enhancing the featu...
متن کاملسودمندی رگرسیونهای تجمیعی و روشهای انتخاب متغیرهای پیشبین بهینه در پیشبینی بازده سهام
مقاله حاضر به بررسی سودمندی رگرسیونهای تجمیعی و روشهای انتخاب متغیرهای پیشبین بهینه (شامل روش مبتنی بر همبستگی و ریلیف) برای پیشبینی بازده سهام شرکتهای پذیرفته شده در بورس اوراق بهادار تهران میپردازد. بهمنظور ارزیابی عملکرد رگرسیون تجمیعی، معیارهای ارزیابی (شامل میانگین قدرمطلق درصد خطا، مجذور مربع میانگین خطا و ضریب تعیین) مربوط به پیشبینی این روش، با رگرسیون خطی و شبکههای عصبی مصنوعی...
متن کامل